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INTRODUCTION

The diffraction model (ref I) provides the basis for quantitative studies

of electrical transport In liquid and amorphous metals. Surprisingly good

agreement with experimental data has been obtained. However, significant

discrepancies between diffraction model predictions and the data are well

known in high resistivity (P > 100 m c) amorphous metals. Such discrepancies

are called saturation effects (ref 2).

Recently, detailed experimental electrical transport studies of low

resistivity amorphous alloys have been reported (ref 3). The present authors

reported diffraction model studies (ref 4) of these alloys employing an

effective t-uatrix adjusted to satisfy the Friedel sum rule and to yield the

observed magnitude of P. The surprising result of the theoretical analysis

was that although qualitative agreement with the experimental results was

obtained with the standard diffraction model, substantially Improved

quantitative agreement was obtained when saturation effects were incorporated

into the model in a manner consistent with that employed to treat saturation

effects in high resistivity metals (ref 5). That is, Improved agreement with

experiment was obtained when the Pippard-Ziman constraint (ref 6) on the

electron-phonon interaction was included. (It had been shown previously that

the Pippard-Ziman constraint can also provide a basis for understanding the

electronic contribution to the ultrasonic attenuation (ref 6) at small qA, and

the degradation of Tc in disordered superconductors (ref 7).)

References are listed at the end of this report.
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-: The Implications of the diffraction model Incorporating phonon

Ineffectiveness through the Pippard-Ziman constraint for low resistivity

alloys are explored In more detail in this report. A broader class of t-

matrices as well as larger ranges of A and 2kF/kp than in Reference 4 are

!| treated. We work in the context of the substitutional model (ref 8), which

assumes the equality of all partial structure factors, but allows for

different t-uatricas for different species; thus, a better basis for

interpretation of concentration dependent features of the T dependence of P

* .than can be obtained in an effective potential treatment (ref 4) is

established. We also restrict our analysis to binary alloys. The results

specific to amorphous magnesium zinc (a-MgZn) alloys, for which qDA ranges

between about 12 and 15 and 2kI/kp n 1.1 are reported in Reference 9.

THEORETICAL MDDELS

The diffraction model (ref 1) (Zman-Faber theory) result for the

electrical resistivity Is

,2-V".o i 2

~~~~-~1 -j - j I [~ J~ i jU(K)I2(1e h 0 ] ()

where 2. is the atomic volume, VF is the Ferai velocity, k7 Is the Fermi

wavevector, K is the scattering vector, h is Planck's constant divided by 2w,

e is the electron charge, and in the "substitutional model," assuming a Debye

phonon spectrum, and a binary alloy

IU(K)2 1 - c1c2 t (K) - t2(K)I2 P(K)

+ Icltl(K) + c2t2(K)I2SP(K) (2)

2
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where ci and t1(C) are the concentration and t-uatrix for the ith component,

+ a-(-) 2 d(-)(-) 2n(x)(n(x)+1)F(qA)f -~ ak(K-)
T 2k1  0 qDq w Kq 3

and(TO - e72 V(i) + C, ! (---)2 1 d(--)(--)2n(x)[n(x)+11F(qA) (4)
T 2k7 0qD qD

* in Shma-Ziman approximation, Sere *-2V(K) Is the Debye-Waller factor, x

(O/T)(q/qjD), qD the Debye wave number, 6 the Debye temperature, T the

temperature, A(z) - (ex-l) 1, a a 3(2bk1)2/Hk1S, N is the averaged Ionic mss,

ks Is Soltsmann' a constant. V(qA) is referred to as the Pippard function and

is given by
2 ytaC~ 3

7(y) (5).m....

We refer to SO(&) as the resistivity static structure factor. lP(K) is the

resistivity static structare factor for a perfectly random array. SP(K) and

TOMK determine the temperature depedece of electrical transport

quatte.

.4The gs..stric structure factors (assumed Identical in the substitutional

model1) are given by

a(&) - all(K) - a22(K - MOO(K = - 1 wi*(- (6)

where a and a run over averaged ionic psitions. The scattering matrix

sesests (which incorporate single site mltiple scattering) are given by

t J00) -(J~~~ nJz)I P 0coo 6) (7)

u#vt4/g

'Ji3
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where ntIJ(Ep) is the scattering phase shift for angular momentum quantum

number £ evaluated at the Fermi energy EF for the jth constituent, a is the

electron mass, Pt(x) is the Ith Legendre polynomial and cos e - 1 - 2(K/2kF) 2 ,

These equations are a generalization of those usually employed in studies of

transport in liquid metals (ref 10) and will be discussed in more detail

elsewhere.

We also give results based on the effective potential model. In this

model, tl(K) - t2 (K) - tE(K) and

-UE(K)12 - SEp(K)ItE(K)12  (8)

where SEP(K) is defined analogously to SP(K) in Eq. (3) with the effective

geometrical structure factor

aE(K) = cicjaij(K) (9)

ij
,;

RESULTS

Results are given for an effective potential and for model t-satrices in

., a binary substitutional model. Percus-Yevick hard sphere structure factors

(ref 11) (with packing fraction 0.525) are used to approximate a(K) and aE(K);

.* the hard sphere diameters are varied to adjust 2kF/k. where kp is the position

* of the principal structure factor peak.
.

* The effective potential has phase shifts %t(EF) given by 0.354, 0.294,

-0.057, and 0.002 for I - 0,1,2,3, respectively, which yield approximate

cancellation for K = 1.6 kF and lead to p vs. T curves similar to those

obtained in Reference 4 for Born approximation pseudopotentials in the large

qDA limit. However, this effective potential heavily weighs backscattering

and so is quite different in form from pseudopotentials. (These t(EF) were

a4



computed for Zn with Xa = 0.85.)

4" The t-uatrices employed in the substitutional model calculations were

computed using Herman and Skillman (ref 12) neutral atom wavefunctions for

a-Mg7Zn3. The values of nd(EF ) are: -0.175, 0.085, 0.034, and 0.001 for Mg

and 0.354, 0.294, -0.057, and 0.002 for Zn (as in the effective potential) for

I - 0 to 3, respectively. (The phase shifts are quite sensitive to exchange.

Xa was taken as 0.75 and 0.85 in Mg and Zn, respectively.) Very similar

" results (not discussed here) have been obtained for other t-matrices

constructed to represent column I and column I metals in the substitutional

model.

DISCUSSION OF RESULTS

The Temperature Coefficient of Resistivity (TCR)

Figure 1 shows graphs of tcr, the normalized TCR, where

tc - (i - ) - (ll/p)dp/dTI8

versus 2kF/kp for the two model potentials.

All the results were obtained with Ep fixed and qD - kF which would not

apply in an alloy series with varying electron-to-atom ratios. The curves

were computed for a - 0.114, but are very good approximations for reasonable

values of a. One sees a shift of the region of negative TCR to larger values

* of 2kp/kp with respect to the results of the simple analysis based on the

temperature dependence of the resistivity static structure factor by Meisel

and Cote (ref 13). Futhermore, analysis of data in a-MgZn alloys indicates

that 50 mcm corresponds to qDA near 12 which produces dramatic changes in the

TCR from the predictions of standard (qDA - ) Ziman-Faber theory.

'



- Comparison of Figures I(a) and 1(b) illustrates non-structural effects

I(i.e., effects produced by different scattering matrices) that might occur.

One can also infer that (especially In cases for which qDA < 15) the averaging

required In treating real binary alloys - whose partial structure factor peaks

might be separated by p/1O - would not yield qualitatively new effects; for

ea mple, about the same range of 2ky/kp would yield negative TCR.

,ris0.4,- -- --
(a) 0.4 (b)

0.2 ,-

A. .I
_0.9 1.0 1.2--

2h,/k, 4

"" M9~ 1.0 .2

.q..

-0.2

-0.4

-040

St.
=

Figure 1. Normalized TCR vs. 2kF/v. for various qDA. (a) For the

effective potential. (b) For the substitutional model.
qDA is Indicated for each curve.
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The Temperature Dependence of the Electrical Resistivity

Figure 2 shows results of calculations at various values of 2kF/kp and

qDA for the substitutional model potential and also at 2kF/kp - 1.1 for qDA -

8 for the effective potential case. (Results at 2kF/kp - 1.11 for the

substitutional model applied to a-MgZn are shown in Reference 9. The graphs

show the normalized relative change in the resistivity,

r B (p(T) - p(9)/(ap(6))

plotted against normalized temperature. (Most results were computed for O -

0.168 but hold for reasonable a.)

The results show that deviations from standard diffraction model

predictions can be explained by incorporating phonon ineffectiveness effects

into the theory.

'.-o
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Figure 2. Normlized relative change in the resistivity vs. normalized
temperature. Curves a-d are for the substitutional model.
Curve s, is for the effective potential. Details of curves
c and d are shown below.
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